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ABSTRACT

The enantioselective total synthesis of (-)- and (+)-petrosin is described. The union of two key segments was executed by Suzuki-Miyaura
coupling. The quinolizidine rings were stereoselectively constructed via a diastereoselective Mannich reaction and an aza-Michael reaction.
The 16-membered ring was constructed by ring-closing metathesis with the second-generation Grubbs catalyst.

The bisquinolizidine alkaloid petrosin (1) isolated as a
racemate from the marine sponge Petrosia seriata by
Braekman1a and from the Xestospongia sp. by Kobayashi
and Kitagawa1b possesses activity against HIV by inhibi-
tion of reverse transcriptase and giant cell formation.1c

In 1994, Heathcock and co-workers reported the first
racemic total synthesis of (()-1 and other isomers.2 They
also revealed stereocenters of the quinolizidine ring epimerized

via formation of bisimine derivative, retro-Mannich, and Man-
nich reactions by treatment with PrNH3OAc at 95 °C.2a Since
optically active petrosin cannot be obtained either from natural
sources or by chemical synthesis, the structural stability and
differences of biological activity have not yet been fully
investigated. In this paper, we describe the enantioselec-
tive total synthesis of (-)- and (+)-petrosin and their bioac-
tivity.

In our retrosynthetic analysis, we set diester 2 as a
precursor of (-)-1 (Scheme 1). Formation of the 16-
membered ring by ring-closing metathesis (RCM) and
subsequent construction of quinolizidine rings by an
intramolecular aza-Michael reaction of a dienone deriva-
tive would lead to (-)-1. Diester 2 could be prepared from
iodide4andalkylborane5byintermolecularSuzuki-Miyaura
coupling and conversion to diene. Segments 4 and 5 would
be accessible from the common piperidine intermediate
6, which could be prepared by the Mannich reaction
from 7.
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Synthesis of optically active hemiaminal 7 commenced
with reduction of the known malonate 83 to diol 9 (Scheme
2). Diol 9 was then subjected to lipase-mediated desymme-

trization4 followed by protection of the other hydroxy group
as a TBS ether to provide acetate 10 in 99% ee.5,6 Acetate

10 was hydrogenated with Raney nickel in the presence of
Boc anhydride,7 and the removal of the acetyl group gave
alcohol 11. When oxidation was carried out by Swern
oxidation, a significant decrease in ee (69%) was observed.
Among various oxidation conditions, TPAP oxidation was
found to efficiently prevent racemization, and 7 was obtained
as a mixture of diastereomers (4:1).

Next, our attention was focused on introduction of the side
chain to piperidine 7 (Scheme 3). Mannich reaction of ketene

silyl acetal 12 (E/Z ) ca. 5:1) smoothly proceeded in the
presence of TBSOTf to afford a mixture of product 6′
(undesired) and 6 (desired) in a ratio of 1.2:1.8 Stereochem-
istry of 6 was established based on NOE experiments after
conversion to the corresponding lactone 15 by deprotection
of the TBS group and lactonization. To improve diastereo-
selectivity, modification of nucleophile and additive effects
were thoroughly investigated. To this end, we found that
thioketene silyl acetal 13 improved selectivity (dr ) 3.4:1).
After conversion of 14 to the desired ester 6 in four steps,
we obtained 6 from 7 in comparable overall yield (36%).

With the common intermediate 6 in hand, we continued
with the elaboration to vinyl iodide 4, one of two key
segments for Suzuki-Miyaura coupling (Scheme 4). The
terminal olefin in 6 was elongated by cross metathesis with
(Z)-1,4-bis(benzyloxy)but-2-ene9 under Grubbs’ modification
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Scheme 1. Retrosynthetic Analysis of (-)-Petrosin (1)

Scheme 2. Synthesis of Optically Active Hemiaminal 7

Scheme 3. Mannich Reaction with Ketene Silyl Acetal
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bond.10 The resulting internal double bond was selectively
hydrogenated in the presence of Et3N without debenzyla-
tion.11 Finally, removal of the TBS group followed by
iodovinylation by Parrikh-Doering oxidation to aldehyde
and Wittig reaction provided the vinyl iodide 4.

The coupling partner 18 was prepared by hydroboration
of 6 with (9-BBN)2. Without separation, alkyl borane 18 was
coupled with vinyl iodide 4 to afford the desired product 3
in excellent yield (Scheme 5).12 After desilylation, one-pot

reduction of the double bond and debenzylation, PCC
oxidation of the resultant diol to dialdehyde, and finally
Wittig methylenation yielded diene 2, a precursor of (-)-
petrosin (1).

Now the stage was set for implementation of the crucial
RCM to construct the 16-membered ring. However, despite

extensive efforts, the planned RCM did not proceed at all
(Scheme 6). A careful conformation analysis suggested that

the each Boc-protected piperidine in 2 has two side chains
located in the trans diaxial position like 20, which might hamper
the reaction of two terminal alkenes. On the other hand, the
two side chains should become axial-equatorial after construc-
tion of quinolizidine rings like 21. On the basis of these
considerations, we decided to examine the RCM after formation
of quinolizidine rings, expecting that the more closely located
two terminal alkenes would promote the RCM.

Another critical issue, which had to be solved before the
RCM, was stereochemistry in quinolizidine formation. Thus,
we executed a model study on the aza-Michael reaction using
a simple substrate 2213,14 (Table 1). The Boc group was

removed with zinc bromide to give 23, which was subjected
to basic conditions (entry 1).14a However, the reaction
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See Supporting Information for details.
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Scheme 4. Synthesis of 4 for Suzuki-Miyaura Coupling

Scheme 5. Key Intermolecular Suzuki-Miyaura Coupling

Scheme 6. Unsuccessful Ring-Closing Metathesis

Table 1. Construction of the Quinolizidine Skeleton

entry reagent solvent temp time yield (%)

1 NaHCO3 aq CH2Cl2 rt 48 h -
2 NH3 aq MeOH 60 °C 12 h 64
3 wet SiO2 (CH2Cl)2 reflux 20 min 64
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resulted in recovery of only the starting material. The desired
quinolizidine 24 was obtained as a single isomer when using
NH3 in methanol (entry 2).14b Furthermore, wet SiO2 in
refluxing 1,2-dichloroethane was found to give quinolizidine
24 effectively as a single isomer (entry 3).15,16 The stereo-
chemistry of 24 was tentatively assigned by good agreement
of 1H NMR for the reduced compound 2517 with that of
natural petrosin.

With the stage set for the endgame, diester 2 was converted
to dienone 26 by a four-step sequence (Scheme 7). After

removal of the Boc group, two quinolizidine rings were
constructed by aza-Michael reaction under the established
conditions to give 27 as a sole product. To our delight, the
expected RCM of diene 27 proceeded nicely with a
combination of the second-generation Grubbs catalyst and
p-quinone18 to afford the 16-membered compound. Finally,
reduction of the double bond in the presence of Et3N

19

completed the total synthesis of (-)-petrosin (1).20

(+)-Petrosin was also synthesized by modification of the
synthetic route (Scheme 8). The optically active nitrile 28 was pre-
pared via lipase-mediated desymmetrization of diol 9. Reduction

of the cyano group and debenzylation gave ent-11. (+)-Petrosin
was synthesized from ent-11 in the same manner as described
above.

Both enantiomers of petrosin and monomer unit 25 were
evaluated for inhibitory activity against syncytium formation
(Table 2).21 While a significant difference was not observed
between each enantiomer, monomer unit 25 exhibited no

inhibitory activity against giant cell formation, indicating that
the dimeric structure would be essential for bioactivity.

In conclusion, we have accomplished an enantioselective total
synthesis of (-)- and (+)-petrosin featuring construction of qu-
inolizidine rings by an aza-Michael reaction and formation of the
16-membered ring by ring-closing metathesis. We found that the
dimeric structure was essential for anti-HIV activity. Further SAR
studies are currently underway and will be reported in due course.
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Scheme 7. Synthesis of (-)-Petrosin (1)

Scheme 8. Synthesis of (+)-Petrosin (1)

Table 2. Inhibition of Syncytium Formation

sample IC50 (µM)

(-)-petrosin 100.2
(+)-petrosin 102.3
(()-25 >400
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